The Brave New World of Flash MX

A Brief Introduction to Object-Oriented Analysis and Design for Flash Developers (Part 1)

In the months before Macromedia released Flash MX in March of 2002, the general Flash community had little idea that their entire world was about to change. Actionscript (in its ECMA-compliant form) was still a bouncing, chubby-cheeked toddler barely 2 years old, and the average Flash user was not a developer, but a designer or artist who was nurturing a quiet fetish for orderly, obedient, and strangely beautiful lines of monospaced text. Although there were many intrepid coders out there pushing the product's boundaries with unbridled enthusiasm, Flash still lacked bite. Something was missing. An enterprise-class application written exclusively in Flash? Not on your life. As wonderful as it was, Flash was a tool for creating web content or building web sites, not for authoring large-scale web applications. When MX hit the shelves, all that changed forever. Macromedia had clearly staked its future on the Studio MX suite of products, and had positioned Flash MX as the standard bearer for their so-called "Rich Internet Application" framework. The company's full resources were clearly focused on transforming Flash into the client of choice for web-enabled, enterprise-class, distributed application development, and this strategy has placed MX developers in an enviable-yet-awkward position. As pioneers on the Rich Internet Application frontier we have--at long last--been given the right tools for the job and have received an encouraging mandate from on high; but there are still important, substantive obstacles to be overcome before the potential of Flash as an environment for application development can be fully realized. Failure to address these issues could hinder our ability to support Macromedia's product vision and compete successfully in this emerging marketplace.

Perhaps surprisingly, it is the natural evolution of the Flash product itself which is responsible for these obstacles. In particular, Flash developers have been largely isolated from industry-standard architectural practices which are common currency in most development settings, and which are utterly essential to enterprise-level development efforts. The community has also been forced to adopt numerous problematic coding techniques in order to meet the unique demands of an authoring tool designed to create animations, not applications. This must change. To remain competitive, Flash developers must broaden and deepen their understanding of OO approaches to analysis and design and must update their toolsets and vocabularies to include the lingua franca of the Object-Oriented world, the Unified Modeling Language (UML). This article provides a two-part general introduction to these topics. Part 1 will outline the content and advantages of OOAD. Part 2 will introduce the reader to the basic concepts and diagrams of the UML.

Why OOAD?

At this point it is fair to ask "why?" What is so special about the OO approach that it has become virtually ubiquitous in the field of software engineering? What are some concrete payoffs for time taken out of a busy schedule to learn these techniques?

The answer to these questions can be found, unsurprisingly, at the beginning: before the advent of OO programming. During this dark, uncivilized, vaguely embarrassing period in our collective pre-history, applications were generally seen as big collections of procedures, and application development consisted of breaking up large, general tasks into smaller and smaller and ever-more-specific tasks, until the original problem was solved. Questions of data and data storage were considered separately from the functions required to manipulate that data. The resulting programs tended to be large, ponderous monoliths. They were massive, unordered collections of procedures written to manipulate massive collections of data structures, with no means to syntactically indicate the relationships between and within these collections--much less enforce those relationships. The larger the application, the worse the situation. Problems did get solved, but the solutions were often messy and the mess could be very difficult to clean up when something went wrong.

Over time, programmers got the bright idea to organize these unwieldy applications by combining semantically related functions and data into a single entity, an object. For example, in a system controlling university admissions all of the procedures and information necessary to process and track a student could be grouped within a single Student object. Eureka! Suddenly problems could not only be solved, they could be modeled. This was a revolution in thinking about code, and it spread like wildfire to every facet of application development. As it turns out, the revolution had many observable side-effects which continue to serve as clear and compelling reasons to take the OO plunge.

· helps manage system complexity

· enables software reuse

· improves system extensibility and scalability

· eases maintenance of deployed systems

· facilitates division of labor during implementation

· aids in client communication and project management

Chaos Theory

Large scale software development consists primarily in the forced imposition of programmatic order on the chaos of reality. As we have already seen, OOAD helps manage that chaos by clarifying and simplifying the problem at hand. The pre-MX approach to Flash development harkens back to the World Before Objects, with decentralized, task-based code, and separation of data from functions. Object-Oriented Analysis and Design can help an ActionScript developer extricate her ways of thinking from the tyrannical idiosyncrasies of a specific, timeline-based authoring tool and to instead turn the tables--bending Flash mercilessly and effortlessly to her will.

Reuse it or Lose it

One interesting side effect of the OO philosophy--quite probably the most touted benefit of all--is that it enables software reuse. Classes
 created in accordance with OO practice can be optimized, field tested, and subsequently reused in completely unrelated systems. Instead of having to Reinvent The Wheel on your next project, you can probably use a wheel you designed for a project last year. Although you may need to modify the hubcaps or the diameter of the lug nuts for your new car, you don't have to start from scratch. This saves time, and time--as we all know--is money. The FUI components introduced with Flash MX are excellent examples of self-contained chunks of reusable software resulting from the OO process. Their immediate and widespread adoption is an indicator of just how advantageous reusable software can be
.

Divide and Conquer

Another thing encouraged by OO best practices is the creation of classes with clearly-defined, immutable interfaces and unwavering adherence to the principle of encapsulation. An interface is the set of properties (also called attributes) and methods (called operations) made publicly available by a class. If a developer needs to write code against the Student class, he needs to know what properties he can access, and which methods he can call, but he need not (indeed should not) know anything about the internal workings of that class. This makes it possible to divide implementation tasks amongst independent developers or development teams and to have these teams work in parallel, each relying on the predefined interfaces of objects being developed by others. Again, this speeds the development process, saving both time and money.

Bigger Better Faster Louder (oh, and could you fix it, too?)
Once a software system is deployed, the real work begins. Things break. Users need additional features. Things break. Management adopts additional business procedures and wants the system extended to reflect them. Things break. The company grows 400% over two years and the server load increases two orders of magnitude and of course . . . things break. During this period, developer energies are focused upon questions of extensibility, scalability, and maintenance. Well-constructed OO systems are nothing short of lifesavers during this phase--far and away the longest period in the life of any successful software system. Without the benefits of OOAD, dealing with deployed systems can be a nightmare that would make Freddy Krueger whimper.

Imagine yourself as an electrician hired to upgrade wiring in a sprawling, multi-wing hospital complex. You've never seen the building before, you have no access to blueprints, can't call the architect, and have no recourse to any other source of design information. You show up on the designated day, the hospital administrator hands you a screwdriver, a jigsaw, a roll of duct tape and a blowtorch, tells you what she wants done, and--with a devilish smile on her face--says "go for it! But …take care not to light the torch in the wrong area, or…BOOM!; and…well…errrrrrm…be sure not to interrupt power to any of the Operating Rooms, or you could kill as many as eight patients--if your timing is bad; and…uhhhhh…turning off the power in storage room #4 could cost us up to two million dollars in contaminated blood supplies and spoiled medicines. But hey, no pressure."

As absurd as this seems, it is precisely the case many developers face when called upon to extend or maintain a software system that has already been deployed. If they are lucky, the code is marginally documented and someone manages to find a copy of a proposal that was, unfortunately, written 4 years ago, by a non-technical manager, roughly 6 months before anyone had even written a line of code. Often, though, they aren't lucky. By following good OO procedures and documenting our OO designs using the UML, we can help to ease the pain of hapless developers who will follow in our footsteps by generating a set of coherently structured, universally legible blueprints illuminating the content, the dependencies and, of course, the brilliance
 of our work.

Communication is Key

Although no formal process can teach you how to tame an impatient
 or dissatisfied client, using OO principles on your projects can help you avoid dissatisfaction and impatience in the first place. I have already mentioned that OO techniques place a heavy emphasis on problem semantics, rather than syntax. As a result, the entire pre-implementation process remains immediately understandable to both developers and clients--thereby facilitating communication, minimizing misunderstandings and reducing errors. A mutually agreed upon interpretation of goals and intentions can be formalized for discussion and later reference, and can be used to identify and extract project milestones, create prioritized feature lists, and manage progress.

It's The Process, Stupid

Careful (or easily annoyed) readers may have noticed by now that I've been rambling on about the necessity and benefits of OOAD without bothering to actually clarify what OOAD is. I mentioned earlier that the concept of an object--a single programmatic entity which groups related attributes and operations-- transformed virtually the entire realm of software development. OOAD is the result of this transformation. Of course, this still doesn't answer the question. In order to do so, we need to look a little more closely at what happens when we build a software system. Any approach to software creation needs to answer four basic questions about a proposed application:

1. what needs to be done?

2. in what domain?

3. how can it be accomplished?

4. what skills will be used?

OOAD is what happens when developers answer all of these questions in a fundamentally OO way: by identifying hierarchies of objects, their responsibilities, and the necessary collaborations between them. These objects do not begin their lives as the familiar objects of ActionScript or C# or Python; rather they are real-world objects describing the problem domain
: Student, Customer, DataConnection, Order, PieChart, Book, or Transaction. These hierarchies are identified, refined, and implemented during a three-phase process outlining a gradual progression from abstraction to specificity
. The three phases are analysis, design, and implementation.
 There is also a semi-distinct fourth phase, testing, which can be considered as an elaboration of implementation.
Object-Oriented Analysis

The process begins with analysis (OOA). During this phase, the participants--clients, future users, architects, developers, and others--attempt to ascertain and clarify "what needs to be done?" in abstract terms. The most important OO concepts that are brought to bear during this phase are use cases and use case scenarios. Simply put, a use case is a common user goal within the new system, and a scenario is the sequence of steps required to achieve that goal. "Place item in shopping cart" is a common use case for web applications, and a simple scenario for this use case might be browse, select item, select color, select quantity, submit. Analysis strives to eliminate use case redundancies, trim away non-essential use cases, discover unanticipated use cases, and optimize the scenarios for each. A good OO team will avoid pre-existing assumptions about the problem in an attempt to gain unique insights and find the underlying shape of the application's problem space.

May want to mention the term "Requirements Analysis". Also might want to touch on creating lists of responsibilities, defining candidate classes and introduce the concept of CRC cards (all items I have found to be very useful in the Analysis phase.
Object-Oriented Design

As the analysis begins to stabilize, the process moves into the design phase (OOD)--itself generally broken into two steps: logical and physical
. During the logical step, the analysis and the fledgling design live in symbiosis--use cases identified during analysis motivate concrete decisions regarding the behaviour, structure, distribution, and content of a proposed design solution, which in turn suggests modifications to, or refinements of, that analysis. A working set of classes is finalized and their interfaces and interrelationships are clarified using UML class diagrams. You can think of class diagrams as blueprints for software; they are a language-neutral way to represent objects and to describe the static relationships that obtain between them. As this design process unfolds, system architects apply their hard-earned knowledge and experience to the problem space: patterns, application frameworks, anti-patterns, or other forms of meta-knowledge
 may be considered, identified, employed, or rejected. According to OO practice, none of these decisions should be tied to a specific language, development platform or operating system.

Physical design, on the other hand, takes a decisive step into the realm of specificity. As physical design begins, specific technologies are layered over the skeletal framework which is the fruit of analysis and logical design. The precise execution environment is determined and classes are localized within that environment. Final choices about languages, platforms, and operating systems are all made, and a first-draft blueprint of the solution space is at long last completed.

Might want to re-introduce the basic concepts of objects here again – make mention of attributes and methods. Right now this section may be a little conceptual for a lot of readers – tying it back to the fundamentals would help.
Object-Oriented Programming (Implementation and Testing)

With this blueprint in hand, the process of transforming an abstract design into functioning code can begin. Like design, the programming phase is really divided into two steps: implementation and testing. UML class diagrams contain all the detail and information necessary to translate design-time constructs into executable code. In the larger context of OOAD, implementation consists largely of undertaking this translation while adhering to best OO practices for each specific language involved in the end product. If all goes according to plan, the translation from abstraction to reality will result in executable code that meets the design specifications and satisfactorily addresses each and every requirement of the client.

In order to guarantee that this is indeed the case, portions of the code are periodically handed off to a group of people responsible for thoroughly testing the implementation. Although this phase is not strictly part of OOAD, the strict adherence to object-oriented principles throughout previous phases of the project makes the job of the Quality Assurance (QA) team much easier. They can now isolating and rigorously test individual classes, individual properties, individual events, and individual methods. When bugs are discovered, as they inevitably will be, OO code makes them easier to isolate and repair
. As a final step, the QA team will refer back to various analysis documents in order to verify that each and every use case has been implemented satisfactorily. The cycle is now complete. The team is ready to ship their product, buy new homes in trendy neighborhoods based on the climbing value of the company stock, and contemplate the next project.

What Next?

In this article we've looked at why Flash developers need to know about OOAD, we've enumerated some of its benefits, and taken a brief look at its internals. In Part 2, we will take a quick tour of the most important tool for documenting, visualizing, and preserving our OO architectures: the UML.

� In essence, a class is a language-specific description of an object. Or reversed: an object is an in-memory instance of a class. A commonly seen analogy compares a class to a cookie-cutter, and objects to the cookies themselves.

� If that isn't enough proof for you, spend a few minutes googling the history of Microsoft's Visual Basic, a product which forever altered the face of application development. Visual Basic "controls" turned VB into the world's most popular programming language, single-handedly changed the face of Rapid Application Development (RAD) for all time, and spawned numerous multi-million dollar companies whose sole purpose in life was to design, package, and deliver more VB controls to the VB community. If that still doesn't convince you, consider this: Larry Wall, creator of PERL, is famous for immortalizing the three traits of all great programmers: laziness, impatience, and hubris. Software reuse is the mantra of both the Lazy and the Impatient. So, if you wanna be a great programmer, live the mantra: software reuse is cool. (I'll leave Hubris up to you. OOAD doesn't directly help with that trait, but two out of three ain't half bad.)

� Ahhhhh. There's the Hubris after all.

� The Bennett Corollary to the Wall Postulate: Great Clients are the attributive inversions of Great Programmers, they are Industrious, Patient, and Modest.

� A common way of learning to think in terms of objects is to write a prose description of the problem under consideration and to mark all of the nouns and verbs in the description. The nouns are candidates to become Objects in the system, and the verbs are candidates to become methods on those objects.

� It is a central tenet of the OO approach to remain in the realm of the abstract for as long as it is feasible to do so.

� In practice, there is a large degree of overlap and feedback between these different phases. Also, several formal implementations of OOAD require that each of these phases be iterated several times, and/or that the entire four-part cycle itself be iterated.

� These two steps further reflect the OO drive to deal with abstractions for as long as possible.

� As per our earlier discussion of software reuse, design patterns, application frameworks, analysis patterns, and their ilk can be considered units of reuse for OO meta-knowledge.

� I mention QA, testing, and bugs only as a trivial factoid because, naturally, your portions of code will always be bug-free and bulletproof--right out of the gate. Sometimes, though, it is good to keep in mind how the other half lives.

